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Hyperspectral image compression using three-dimensional
significance tree splitting
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A three-dimensional (3D) wavelet coder based on 3D significance tree splitting is proposed for hyperspectral
image compression. 3D discrete wavelet transform (DWT) is applied to explore the spatial and spectral
correlations. Then the 3D significance tree structure is constructed in 3D wavelet domain, and wavelet
coefficients are encoded via 3D significance tree splitting. This proposed algorithm does not need to use
ordered lists, moreover it has less complexity and requires lower fixed memory than 3D set partitioning
in hierarchical trees (SPIHT) algorithm and 3D set partitioned embedded block (SPECK) algorithm. The
numerical experiments on AVIRIS images show that the proposed algorithm outperforms 3D SPECK, and
has a minor loss of performance compared with 3D SPIHT. This algorithm is suitable for simple hardware
implementation and can be applied to progressive transmission.

OCIS codes: 100.0100, 100.2000, 100.6890.

Hyperspectral images that have been widely used in mil-
itary and civilian applications are massively large sized
three-dimensional (3D) data sets. Efficient compression
needs to be applied to these data sets in order to re-
duce the storage and bandwidth costs. In recent years,
3D wavelet image compression algorithms based on 3D
set partitioning in hierarchical trees (SPIHT)[1−3] and
3D set partitioned embedded block (SPECK)[4−6] have
been proposed for progressive hyperspectral image com-
pression. The ordered lists are used in these algorithms
to store the coordinates of significance coefficients and
subsets in the sorting order. The use of lists poses some
drawbacks for hardware implementation in that a large
amount of unfixed memory is needed to maintain these
lists and the operations of the list nodes increase the com-
plexity of algorithms.

In this paper, we extend our recently proposed two-
dimensional (2D) embedded wavelet coder based on sig-
nificance tree splitting[7] to three dimensions for hyper-
spectral image compression. We call this new coding
technique 3D significance tree splitting. First, 3D dis-
crete wavelet transform (DWT) is used to exploit the spa-
tial and spectral correlations. Next, the 3D significance
tree structure is constructed from the 3D orientation
tree and the wavelet coefficients are encoded via 3D sig-
nificance tree splitting. This algorithm does not require
lists and it is suitable for hardware implementation.

As hyperspectral images have a tight statistical de-
pendency along both spatial and spectral directions, 3D
DWT can exploit spatial and spectral correlations. Here,
we first apply 2D dyadic wavelet decomposition on each
spectrum of image, and then apply one-dimensional (1D)
dyadic wavelet decomposition on the spectral dimension.
In the resulting 3D wavelet domain, most of the en-
ergy is concentrated in the low frequency subbands. The
spatial relationship on the hierarchical pyramid of the
coefficients can be represented as the 3D orientation tree
structure. Figure 1 shows the 3D orientation tree struc-
ture after two-level decomposition. All the coefficients
are organized by 3D orientation trees with roots located

at the low-low-low (LLL) subband. Each root node in
LLL subband has seven offspring which correspond to
the pixels of the seven different spatial orientations at
the next finer scale of the pyramid. Except of the high-
est frequency subbands and LLL subband, each node has
eight offspring corresponding to pixels of the same spa-
tial orientation at the next finer level of the pyramid,
and these eight offspring form a group of 2 × 2 × 2 ad-
jacent pixels. Let us define O(i, j, k) as the offspring of
the pixel (i, j, k). So for the LLL subband we have

O(i, j, k) = {(i, j + hLLL, k), (i + wLLL, j, k),

(i, j, k + lLLL), (i + wLLL, j + hLLL, k),

(i + wLLL, j, k + lLLL), (i, j + hLLL, k + lLLL),

(i + wLLL, j + hLLL, k + lLLL)}, (1)

and for the subbands with the exception of the highest
frequency subbands and LLL subband we have

Fig. 1. 3D orientation tree structure.
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O(i, j, k) = {(2i, 2j, 2k), (2i + 1, 2j, 2k), (2i, 2j + 1, 2k),

(2i, 2j, 2k + 1), (2i + 1, 2j + 1, 2k),

(2i, 2j + 1, 2k + 1), (2i + 1, 2j, 2k + 1),

(2i + 1, 2j + 1, 2k + 1)}. (2)

In Eq. (1) hLLL, wLLL and lLLL are the height, width,
and length of LLL subband, respectively.

During the sorting pass for each bitplane as in 3D
SPIHT and 3D SPECK, we need to scan all the
coefficients in the set of tree or block to judge the sig-
nificance of the set, which leads to repeated operations in
every bitplane. We are trying to find a way to make this
significance test convenient. In addition, the coefficients
of the different spatial orientations on the same level of
the pyramid also have correlations. For the above two
reasons, we construct another tree structure, called 3D
significance tree, from 3D orientation tree structure. In
order to represent the significance tree structure, we call
the nodes at the same spatial location of different spatial
orientation subbands at the same scale of pyramid the
neighbouring nodes. Let N(i, j, k) denote as the neigh-
bouring nodes of the node (i, j, k). Here we only use the
neighbouring nodes of the node in high-low-low (HLL)
subbands as shown in Fig. 1. N(i, j, k) is defined as

N(i, j, k) = {(i, j + hm, k), (i, j, k + lm),

(i, j + hm, k + lm), (i − wm, j + hm, k),

(i − wm, j + hm, k + lm), (i − wm, j, k + lm)},

(i, j, k) ∈ HLLm, m = 0, · · · , Dmax − 1 (3)

where hm, wm, and lm are respectively the height, width,
and length of the HLL subband of the mth level in the
pyramid, Dmax is the total wavelet decomposition level.
Then we define P (i, j, k) as the parent node of the node
(i, j, k) in HLL subbands, and we have

P (i, j, k)

=

⎧⎪⎨
⎪⎩

(i − wDmax−1, j, k),
(i, j, k) ∈ HLLDmax−1

(�i/2� , �j/2� , �k/2�) ,
(i, j, k) ∈ (HLL0

⋃
HLL1 · · ·

⋃
HLLDmax−2)

, (4)

where wDmax−1 is the width of the HLLDmax −1 subband.
The relationship between parent node and its offspring
in HLLDmax −1 subband is different from that in other
HLL subbands.

After we defined the neighbouring nodes and par-
ent nodes of the node in HLL subbands, let us define
ST(i, j, k, d) as the value of the significance tree node
at depth d with the pixel (i, j, k). These pixels are only
in LLL subband and HLL subbands. We use Ci,j,k to
represent the value of the pixel (i, j, k) in the wavelet do-
main. For the lowest depth d = 0, ST(i, j, k, d) is set to
the maximum absolute value of Ci,j,k and the value of all
pixels in N(i, j, k). For the higher depths, ST(i, j, k, d) is
set to the maximum absolute value of Ci,j,k, the value of
all pixels in N(i, j, k) and the value of the offspring of the

Fig. 2. Construction of 3D significance tree from 3D orienta-
tion tree.

node (i, j, k) at depth d − 1 of the significance tree. For
the highest depth d = Dmax, ST(i, j, k, d) is set to the
maximum absolute value of Ci,j,k and the value of the
offspring of the node (i, j, k) at depth Dmax − 1 of the
significance tree. Figure 2 shows the construction of the
significance tree. Steps for constructing the significance
tree are listed as follows.

1) Set the nodes at depth d = 0,

ST(i, j, k, d)

= max{abs(Ci,j,k, Cu,v,w, (u, v, w) ∈ N(i, j, k))},

(i, j, k) ∈ HLL0. (5)

2) Set the nodes at depth d = 1, 2, · · · , Dmax − 1,

ST(i, j, k, d)

= max{abs(Ci,j,k, Cu,v,w, (u, v, w) ∈ N(i, j, k)),

ST(x, y, z, d − 1), (x, y, z) ∈ O(i, j, k)},

(i, j, k) ∈ HLLd (6)

3) Set the nodes at depth d = Dmax,

ST(i, j, k, d) = max{abs(Ci,j,k), ST(x, y, z, d − 1),

(x, y, z) ∈ O(i, j, k)},

(i, j, k) ∈ LLL. (7)

From the idea of constructing the 3D significance tree,
we can observe that the value of each node is the largest
magnitude of the same spatial-location node, its neigh-
bouring nodes and all of their descendants in 3D orien-
tation tree. If the node in significance tree is significant,
it indicates that the set including the corresponding tree
coefficients is significant. The significance tree provides
significance information of the coefficients, so we only
need to test the significance of the node in significance
tree to judge the significance of its corresponding set of
tree. This avoids scanning all the coefficients in the set
repeatedly for each bitplane.

After we build up the significance tree, the coefficients
are encoded via 3D significance tree splitting. Since 3D
significance tree can provide the significance information
of the coefficients, the encoding of the coefficients is
guided by the significance test of the significance tree
node. We define the significance function of the node in
3D significance tree or the coefficient in wavelet domain
at bitplane n as

Sn(T ) =
{

1, if |T | ≥ 2n

0, otherwise . (8)
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Below we present the encoding algorithm using 3D sig-
nificance tree splitting:

1) Initialization
Output n =

⌊
log2(max(i,j,k)∈LLL ST(i, j, k, Dmax))

⌋
.

2) Encoding Step
For d = Dmax to 0,
Encode (d, n).

3) Quantization Step
Decrement n by 1 and go to step 2).

Encode (d, n)
If d = Dmax

For each (i, j, k) in LLL subband
If Sn+1(T (i, j, k, d)) = 0

Output Sn(T (i, j, k, d))
If Sn(T (i, j, k, d)) = 1

Encode coefficient (i, j, k, n)
Else

For each (i, j, k) in HLLd subband
If Sn(T (P (i, j, k), d + 1)) = 1

If Sn+1(T (i, j, k, d)) = 0
Output Sn(T (i, j, k, d))

If Sn(T (i, j, k, d)) = 1
For each (x, y, z) ∈ {(i, j, k), N(i, j, k)}

Encode coefficient (x, y, z, n)
Encode coefficient (i, j, k, n)

If Sn+1(Ci,j,k) = 1
Output the nth MSB of |Ci,j,k|

Else
Output Sn(Ci,j,k)
If Sn(Ci,j,k) = 1

Output the sign of the Ci,j,k.
The coding scheme for each bitplane is performed from

the lowest resolution subband to higher resolution sub-
bands, and subbands of the same resolution are encoded
together. Unlike other hierarchical coders, we utilize the
significance tree to test the significance of the group
of coefficients. In the encoding of the significance tree
node corresponding to the pixel in LLL subband, we first
test the significance of the node in significance tree that
has never been significant and output its significance.
If it is significant, the coefficient of the same spatial
location in wavelet domain is encoded. While encoding
the significance tree node corresponding to the pixel in
HLL subbands, we first test the significance of its par-
ent node in the significance tree. If parent node has
been significant, it indicates that there is the possibility
that its children nodes are significant. Then we test the
significance of the node that has never been significant
in significance tree and output its significance. If it is
significant, the coefficient of the same spatial location
and its neighbouring nodes are encoded together. While
encoding the coefficient, if it has been significant before
the last encoding step, we encode its bit of the current
bitplane; otherwise, we test its significance, once it is sig-
nificant, output its sign. The last step of this algorithm
decreases the bitplane by 1 and returns to the encoding
step. This step makes the whole encoding process pro-
gressive.

The bitplane decoding scheme basically follows the
same procedure as the encoding scheme. The significance
tree build-up stage is not needed at the decoder because
the significance information is already contained in the
encoded bit stream. Given the encoded sequences of the

significance tree test, the decoder can duplicate the steps
taken by the encoder. The decoding has less computa-
tional complexity than encoding.

This algorithm does not use ordered lists that is al-
ways used in 3D SPIHT and 3D SPECK. Although the
utilization of ordered lists enables the encoding process
to be decomposed into multipass to follow the decreasing
order of the perceived R-D significance levels, it also
has some drawbacks. Firstly, the memory required by
these lists is not fixed for it not only depends on the
size of image but also on the characteristics of image.
It will increase along with the embedded encoding pro-
cess. Secondly, the inserting and deleting operations of
these lists increase the complexity of the algorithm. The
complexity of the algorithm will increase along with the
encoding process, because at high bit rate there will be
a lot of nodes in lists. The unfixed memory require-
ment and complexity make the algorithm using lists not
an effective compression algorithm for hardware imple-
mentation. In our algorithm, we use significance tree
instead of ordered lists to track the significance status
of the coefficients. In addition, the utilization of sig-
nificance tree simplifies the significance test of the set
of tree because the significance of one node indicates
the significance of its corresponding set of tree, and
as a result we need not scan all of the coefficients in
the set of tree. During the encoding and decoding pro-
cess the sorting pass and refinement pass are merged
into just one pass that results in a simple control flow
implementation and the memory required for the sig-
nificance tree is fixed only to the size of LLL subband

Fig. 3. Hyperspectral images. (a) Band 70 of “Moffet” test
image; (b) band 60 of “Jasper” test image; (c) band 65 of
“Cuprite” test image; (d) band 55 of “Lunar” test image.

Table 1. Lossless Compression Ratio

Hyperspecral Compression Ratio

Image 3D SPECK 3D SPIHT Proposed

Moffet 1.540 1.562 1.544

Jasper 1.475 1.501 1.482

Cuprite 1.505 1.535 1.512

Lunar 1.586 1.613 1.595
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Table 2. Rate Distortion Performance Comparison

Bit SNR (dB)

Rate Moffet Jasper Cuprite Lunar

(bpppb) 3D 3D Proposed 3D 3D Proposed 3D 3D Proposed 3D 3D Proposed

SPECK SPIHT SPECK SPIHT SPECK SPIHT SPECK SPIHT

0.5 28.912 30.164 29.401 26.442 26.953 26.426 37.233 38.589 37.712 36.977 37.892 37.022

1.0 36.347 37.497 36.696 32.053 32.900 32.260 43.488 44.866 43.975 43.482 44.093 43.560

1.5 42.032 43.041 42.348 37.910 39.141 38.510 47.421 48.488 47.856 47.768 48.780 48.014

2.0 46.070 46.972 46.369 44.047 44.840 44.253 50.847 51.812 51.152 50.908 51.807 51.116

2.5 48.830 49.550 49.114 48.179 48.894 48.259 53.411 54.092 53.759 53.220 54.075 53.629

3.0 51.784 52.138 52.056 50.142 51.141 50.618 56.003 56.910 56.469 55.661 56.713 56.320

and HLL subbands, which is related to the image size
and decomposition level. Thus the proposed coder can
achieve lower complexity and fixed predetermined mem-
ory requirement.

The performance of the proposed algorithm is evalu-
ated on four AVIRIS images. These hyperspectral images
are 512 lines by 614 columns and 224 spectral bands. We
select the data set of size 256 × 256 × 32 and 16 bits
per pixel as the test set in the experiments. Figure 3
shows examples of one band of these four hyperspectral
images. We use four-level dyadic decomposition with the
9/7 integer lifting scheme[8] along three directions of the
data set. The lossless compression performances of 3D
SPIHT, 3D SPECK, and our algorithm are illustrated in
Table 1. Our algorithm exhibits a loss of average 1.2%
compared with 3D SPIHT and a better ratio of average
0.4% compared with 3D SPECK. We also compare the
lossy compression performances at different bit rates of
these three algorithms by means of signal-to-noise ratio
(SNR)

SNR = 10 log10

σ2
x

MSE
(dB), (9)

where σ2
x is the average squared value of the original

AVIRIS sequence, and MSE is the mean squared error
over the entire sequence. Table 2 shows the lossy com-
pression performances of three algorithms. The exper-
imental results reveal that the proposed algorithm ex-
hibits better performance of about average 0.3 dB com-
pared with 3D SPECK and a performance loss of about
average 0.6 dB compared with 3D SPIHT.

This paper proposes a 3D wavelet based coder via sig-
nificance tree splitting for hyperspectral image compres-
sion. The 3D wavelet transform is applied to exploit both
the spectral and spatial correlations. 3D significance
tree structure is established in 3D wavelet domain, and

then every bitplane is encoded via significance tree split-
ting. The proposed algorithm effectively exploits the in-
traband correlation and interband correlation in wavelet
domain, and it has low complexity and fixed low memory
requirement. It is suitable for hardware implementation.
Besides, the proposed algorithm is embedded and can be
applied to progressive transmission.

In our future work, we will focus on the wavelet packet
decomposition scheme for 3D wavelet transform to ex-
ploit the spectral and spatial correlations of hyperspec-
tral images more effectively, and then modify the estab-
lishment of the 3D significance tree and the correspond-
ing coding algorithm according to the 3D wavelet packet
transform.
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